Grid/Cloud Computing over Optical Networks

- **Opportunities & Research Issues**

Chunming Qiao

Lab for Advanced Network Design, Evaluation and Research (LANDER)

University at Buffalo (SUNY)

Outline

- Optical Grid Computing for Petascale Science
- Federated Computing and Networking as Next Generation Cloud Computing

Petascale Science

- Sharing of large amounts of data (in PB range) generated by big experiment instruments and observatories
- Supporting thousands of collaborators worldwide
- Distributed data processing
- Distributed simulation, visualization, and computational steering
- Distributed data management

Petascale Science

<mark>q1</mark>

Science Areas / Facilities	End2End Reliability	Connectivity	Today	5 years	Network Services
Advanced Light Source	-	 DOE sites US Universities Industry 	1 TB/day 300 Mbps	5 TB/day 1.5 Gbps	 Guaranteed bandwidth PKI / Grid
Bioinformatics	-	 DOE sites US Universities 	625 Mbps	250 Gbps	 Guaranteed bandwidth High-speed multicast
Chemistry / Combustion	-	 DOE sites US Universities Industry 	-	10s of Gigabits per second	 Guaranteed bandwidth PKI / Grid
Climate Science	-	 DOE sites US Universities International 	-	5 PB per year 5 Gbps	 Guaranteed bandwidth PKI / Grid
High Energy Physics (LHC)	99.95+% (Less than 4 hrs/year)	 US Tier1 (DOE) US Universities International 	10 Gbps	100 Gbps (30-40 Gbps per US Tier1)	 Guaranteed bandwidth Traffic isolation PKI / Grid

THE FUTURE OF OPTICAL COMMUNICATIONS IS HERE

Current, Near- and Long-term Requirements

Science Areas	Today End2End Throughput	5 years End2End	5-10 Years End2End	Remarks
High Energy Nuclear Physics	10 Gb/s	100 Gb/s	1000 Gb/s	high bulk throughput and sporadic
Climate (Data & Computation)	0.5 Gb/s	160-200 Gb/s	N x 1000 Gb/s	high bulk throughput
Genomics (Data & Computation)	0.091 Gb/s (1 TB/day)	100s of users	1000 Gb/s + QoS for control	high throughput and steering
SNS NanoScience	Not yet started	1 Gb/s	1000 Gb/s + QoS for control	remote control and time critical throughput
Fusion Energy	0.066 Gb/s (500 MB/s burst)	0.198 Gb/s (500MB/20 sec.)	N x 1000 Gb/s	time critical throughput
Astrophysics	0.013 Gb/s (1 TB/week)	N*N multicast	1000 Gb/s	computational steering and collaborations

THE FUTURE OF OPTICAL COMMUNICATIONS IS HERE

A Composable Data Transfer Framework

- Dynamic reconfiguration capabilities
 - to support different objectives such as burst, scheduled, and streaming delivery
- Automatic detection of scenarios and use of appropriate/ available
 - transport media (e.g., (circuit-based WDM, VLANs, SONET, etc), and
 - protocols, such as (TCP-variants, UDP-variants, InfiniBand, SCSI, etc.)
- Capability of one-to-many, and many-to-many data transfers,
 - via Application Level Multicast or peer-to-peer approach

Federated Computing and Networking (FCN)

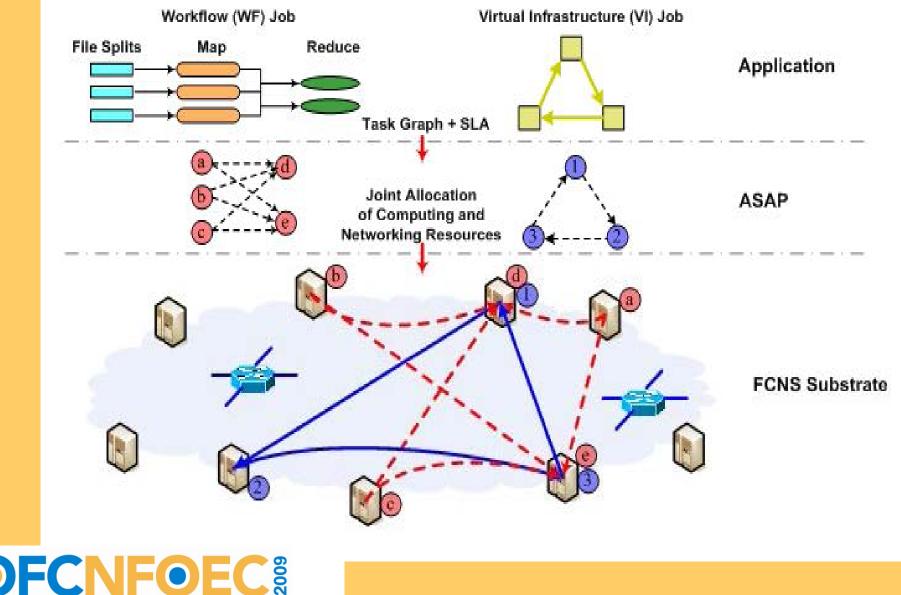
- A FCN system consists of computing facilities (e.g., clusters, data centers) interconnected with wide-area WDM networks
- A FCN <u>service provider</u> uses its own computing and WDM networking resources (or resources that belong to a third party for which it is a broker)
- FCN: the next generation of Cloud Computing
 - Interact directly with the WDM networks
 - Integrate a larger scale of computing and networking resources
 - Provide stronger Service Level Agreements (SLAs) including high availability and robustness than e.g., Amazon's EC2

VI Job & WF Job

- Two general types of distributed jobs / apps
- Virtual Infrastructure (VI)
 - specifies a set of computing resources (e.g., processing clusters), and their connectivity (in terms of topology, bandwidth, and delay) for a specific period of time
 - Typically represented using a general directed graph

Workflow (WF)

- involves large data sets to be distributed among many sites
- Represented using a directed acyclic graph, or DAG, where directed edges imply precedence among the tasks


Support VI/WF Jobs in FCNS: the ASAP Platform

- Provision Application-Specific, Agile, and Private (ASAP) platform
 - Given: a VI or WF job request,
 - Determine: the mapping of the tasks to computing facilities, and the routes as well as wavelengths to be used for connections over the WDM networks,
 - Objective: to satisfy the job's requirements with some optimization goals

Illustration of FCNS

THE FUTURE OF OPTICAL COMMUNICATIONS IS HERE

Example Research Issues

Advanced Network Provisioning Technologies

- enable dynamic, multi-layer, end-to-end, circuitbased services across federated networks
- Extensions of existing control plane technologies such as (GMPLS, MPLS, etc.) to accommodate scheduling, and reservation
- unified control plane technologies, path computations, and traffic engineering for multi-layer and multi-domain networks offering hybrid best-effort IP, burst and switched circuit services

Example Research Issue II

- <u>Resource co-scheduling to improve data</u> <u>transfer or data analysis job performance</u>:
 - Offline/online provisioning of data transfer request(s)
 - Optimal co-scheduling of computing resources (e.g., storage/caching) and network resources
 - Offline/online provisioning of data analysis job(s)
 - Decide the execution host(s) for the job(s), and establish network paths to stage missing input files locally

Example Research Issue III

- Fault Diagnosis and Tolerance
 - Dynamic performance monitoring over heterogeneous multi-domain networks
 - Fault location and diagnosis
 - Protection/Restoration approaches to survive various failure scenarios
 - Proactive replication to increase the availability of data
 - Network coding to reduce storage and bandwidth requirements

Research Issue IV

- SLA-driven, cost-effective algorithms for provisioning ASAP platforms,
 - addressing the optimal joint task assignment & scheduling and lightpath establishment (as well as traffic grooming) problems,
 - subject to heterogeneous computing resources and limited optical networking resources
- Robust and resilient approaches to survivable ASAP platforms
 - considering tradeoffs involving SLA guarantee and resource usage, under various failure scenarios

Previous Results

- <u>"Performance Comparison of Optical Circuit and</u> <u>Burst Switching for Distributed Computing</u> <u>Applications" - OFC 2008</u>
- "Survivable Optical Grids" OFC 2008
- <u>"Task Scheduling and Lightpath Establishment in</u>
 <u>Optical Grids" -</u> INFOCOM 2008 Mini-Conference

Recent Works

- <u>Maximizing the Revenues for Distributed Computing</u>
 <u>Applications over WDM Networks</u> OFC 2009, OMG2
- <u>"Survivable Logical Topology Design for Distributed</u> <u>Computing in WDM Networks" - OFC 2009 OMO3</u>
- <u>"Robust Application Specific and Agile Private</u> (ASAP) Networks Withstanding Multi-layer Failures"
 <u>-</u>OFC 2009 OWY 1 (Wed)
- <u>"Online Job Provisioning for Large Scale Science</u>
 <u>Experiments over an Optical Grid Infrastructure</u>" HSN 2009 in conjunction with INFOCOM 2009
- <u>"Application-Specific, Agile and Private (ASAP)</u>
 <u>Platforms for Federated Computing Services over</u>
 <u>WDM Networks -</u> in INFOCOM 2009 Mini-Conference

Thank you!

